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Abstrak

Keamanan perangkat lunak menjadi semakin penting di era digital, terutama dalam
menghadapi serangan siber seperti buffer overflow. Pengujian keamanan yang komprehensif
diperlukan untuk menemukan kerentanan tersebut, dengan teknik fuzzing sebagai salah satu
pendekatan yang efektif. Penelitian ini mengimplementasikan whitebox
fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) untuk
mendeteksi kerentanan pada perangkat lunak pengolah dokumen berbasis binary, yaitu
PDFCook versi 0.4.5. Hasil penelitian menunjukkan bahwa dalam waktu 10 menit 2 detik,
AFL++ berhasil menemukan 2.952 crash dengan 110 file crash unik yang tersimpan. Jenis
kerentanan yang teridentifikasi didominasi oleh Segmentation Fault (SEGV) sebanyak 94,5%,
diikuti oleh Heap Buffer Overflow (3,6%), SIGABRT, dan Out of Memory. Temuan ini
membuktikan bahwa fuzzing berbasis AFL++ merupakan metode yang efisien, ekonomis, dan
efektif untuk mengungkap kerentanan keamanan pada perangkat lunak sebelum dirilis ke
lingkungan produksi.

Kata Kunci: Keamanan Aplikasi, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address
Sanitizer.
Abstract

Software security is increasingly crucial in the digital age, particularly against
cyberattacks such as buffer overflow. Comprehensive security testing is required to uncover such
vulnerabilities, with fuzzing technigues serving as one effective approach. This study
implements whitebox fuzzing using AFL++ combined with Address Sanitizer (ASan) to detect
vulnerabilities in binary-based document processing software, specifically PDFCook version
0.4.5. The results show that within 10 minutes and 2 seconds, AFL++ successfully detected 2,952
crashes with 110 unique crash files stored. The identified vulnerabilities were dominated by
Segmentation Fault (SEGV) at 94.5%, followed by Heap Buffer Overflow (3.6%), SIGABRT, and
Out of Memory. These findings demonstrate that AFL++-based fuzzing is an efficient, cost-
effective, and practical method for uncovering security vulnerabilities in software prior to release
into production environments.

Keywords: Application Security, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address
Sanitizer.
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1. Pendahuluan

Keamanan perangkat lunak telah menjadi aspek yang semakin krusial dalam era digital saat
ini, seiring dengan meningkatnya kompleksitas dan frekuensi serangan siber. Salah satu
kerentanan yang terus menjadi ancaman serius adalah buffer overflow, di mana data yang
dimasukkan melebihi kapasitas buffer yang dialokasikan, sehingga dapat menyebabkan eksekusi
kode berbahaya atau pengambilalihan sistem (Manes et al., 2021). Untuk mengidentifikasi
kerentanan semacam ini, diperlukan pendekatan pengujian keamanan yang komprehensif dan
efektif, mengingat ukuran dan kompleksitas perangkat lunak modern seringkali menyulitkan
analisis manual. Salah satu teknik pengujian keamanan yang telah terbukti efektif adalah fuzzing,
yaitu metode otomatis dengan memberikan input tidak valid atau acak kepada program untuk
menemukan bug dan kerentanan (Nagy et al., 2021). Fuzzing memungkinkan deteksi kerentanan
yang mungkin terlewatkan dalam pengujian konvensional, karena dapat menghasilkan variasi
input yang luas dan tidak terduga. Dengan berkembangnya berbagai alat dan pendekatan fuzzing,
teknik ini semakin diakui sebagai komponen penting dalam siklus pengembangan perangkat
lunak yang aman.

Berdasarkan tingkat akses terhadap kode sumber, fuzzing dapat dikategorikan
menjadi black-box, grey-box, dan white-box (Manes et al., 2021). White-box
fuzzing memanfaatkan akses penuh terhadap kode sumber, memungkinkan instrumentasi dan
analisis yang lebih mendalam, seperti penggunaan Address Sanitizer (ASan) untuk mendeteksi
kesalahan memori secara real-time (Zhang et al., 2022). Pendekatan ini sangat berguna untuk
mengungkap kerentanan seperti heap buffer overflow, use-after-free, dan out-of-bounds
access yang seringkali sulit dideteksi tanpa analisis kode. Dalam penelitian ini, penulis
mengimplementasikan white-box fuzzing menggunakan AFL++ (American Fuzzy Lop++), yang
merupakan alat coverage-guided fuzzer yang telah terbukti sukses dalam menemukan ratusan
kerentanan di berbagai perangkat lunak (Fioraldi et al., 2020). AFL++ menggunakan pendekatan
mutasi berbasis cakupan kode (coverage-guided) untuk menghasilkan input baru yang dapat
menjangkau jalur eksekusi yang sebelumnya tidak teruji, sehingga meningkatkan peluang
menemukan kerentanan yang tersembunyi.

Berdasarkan urasian diatas, penelitian ini bertujuan untuk menguji efektivitas AFL++
dalam menemukan kerentanan pada perangkat lunak pengolah dokumen berbasis binary,
khususnya PDFCook. Dengan menggabungkan kekuatan AFL++ dan instrumentasi Address
Sanitizer, diharapkan dapat diidentifikasi berbagai jenis kerentanan memori dalam waktu singkat,
sekaligus memberikan kontribusi praktis bagi pengembang dalam meningkatkan keamanan
perangkat lunak sebelum digunakan secara luas.

2. Metode Penelitian

Penelitian ini menggunakan pendekatan eksperimental untuk menguji efektivitas
teknik white-box fuzzing dalam mengidentifikasi kerentanan keamanan pada perangkat lunak
pengolah dokumen berbasis biner. Tahapan penelitian dirancang secara sistematis dan mengikuti
kerangka kerja terstruktur yang meliputi: pemilihan perangkat lunak target, instalasi dan
konfigurasi alat fuzzing (AFL++), persiapan corpus input, pelaksanaan fuzzing, serta analisis
hasil crash yang ditemukan. Metode yang diterapkan memanfaatkan integrasi antara AFL++
sebagai coverage-guided fuzzer dan Address Sanitizer (ASan) sebagai instrumen deteksi
kesalahan memori, dengan tujuan menghasilkan pengujian yang efisien dan terarah. Seluruh
proses dilakukan dalam lingkungan terkontrol untuk memastikan konsistensi dan keberulangan
eksperimen, sehingga temuan yang dihasilkan dapat diandalkan untuk evaluasi lebih lanjut.

Penelitian ini dilaksanakan dengan mengikuti kerangka kerja terstruktur yang terdiri dari
lima tahap utama, dimulai dari pemilihan perangkat lunak hingga analisis hasil fuzzing. Setiap
tahap dirancang untuk memastikan proses pengujian berjalan sistematis, terukur, dan dapat
direplikasi. Adapun alur penelitian secara keseluruhan dapat dilihat pada Gambar 1.
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Gambar 1. Alur Penelitian

2.1. Pemilihan Perangkat Lunak

Tahap pertama adalah penentuan perangkat lunak target yang akan diuji. Peneliti
memilih PDFCook versi 0.4.5, sebuah perangkat lunak pengolah dokumen PDF berbasis biner
yang ditulis dalam bahasa C/C++. Pemilihan didasarkan pada kriteria bahwa perangkat lunak
harus dapat dikompilasi dengan GNU Compiler Collection (GCC)yang mendukung
instrumentasi Address Sanitizer (ASan), serta memiliki fitur pemrosesan file eksternal yang
rentan terhadap input tidak terduga. PDFCook berjalan pada platform Linux dan mendukung
berbagai operasi seperti penggabungan, pemisahan, dan dekripsi file PDF.

2.2. Instalasi dan Konfigurasi AFL++

Pada tahap ini, AFL++ diinstal dan dikonfigurasi untuk mendukung white-box fuzzing.
Perangkat lunak target dikompilasi ulang menggunakan GCC dengan opsi -
fsanitize=address untuk mengaktifkan ASan, sehingga setiap kesalahan memori selama fuzzing
dapat terdeteksi dan dilaporkan. Instrumentasi cakupan kode (code coverage instrumentation)
juga diterapkan agar AFL++ dapat memantau jalur eksekusi baru yang dihasilkan dari mutasi
input.

2.3. Persiapan Input Awal (Seed Corpus)

Input awal berperan penting dalam memandu mutasi AFL++ menuju area kode yang
potensial rentan. Peneliti menyiapkan corpus berupa file PDF yang dihasilkan secara otomatis
menggunakan skrip Python dengan modul FPDF. File PDF tersebut berisi konten sederhana
seperti teks dan judul, yang selanjutnya digunakan sebagai bahan awal untuk proses mutasi.
Pemilihan format PDF dilakukan karena PDFCook secara khusus menerima dan memproses file
dengan ekstensi tersebut.
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2.4. Pelaksanaan Proses Fuzzing

Proses fuzzing dijalankan dengan perintah: afl-fuzz -i input_corpus -0
output_fuzzing_bugs -- ./pdfcook @@ Fuzzing berlangsung selama 10 menit 2 detik dalam
lingkungan terisolasi. AFL++ secara otomatis memutasi file input awal, menjalankan PDFCook
dengan input yang dimutasi, dan memantau terjadinya crash atau perilaku tidak normal. Setiap
crash yang terdeteksi disimpan dalam folder output untuk analisis lebih lanjut.

2.5.  Pengumpulan dan Analisis Hasil

Setelah proses fuzzing selesai, semua file crash yang tersimpan dianalisis
menggunakan Address Sanitizer dan GDB (GNU Debugger) untuk mengidentifikasi jenis
kerentanan, seperti heap buffer overflow, segmentation fault (SEGV), out-of-memory,
atau SIGABRT. Hasil analisis kemudian dikategorikan dan didokumentasikan untuk
mengevaluasi efektivitas AFL++ dalam menemukan kerentanan pada perangkat lunak target

3. Hasil dan Pembahasan

Bab ini menyajikan temuan empiris dari implementasi white-box fuzzing menggunakan
AFL++ pada perangkat lunak PDFCook, beserta analisis mendalam terhadap hasil yang
diperoleh. Data yang dikumpulkan meliputi jumlah crash yang terdeteksi, jenis kerentanan yang
berhasil diidentifikasi, serta karakteristik input yang memicu perilaku tidak normal pada
perangkat lunak. Pembahasan tidak hanya berfokus pada deskripsi kuantitatif hasil fuzzing, tetapi
juga mengaitkan temuan tersebut dengan konteks keamanan perangkat lunak, seperti potensi
eksploitasi, dampak kerentanan, dan efektivitas metode yang digunakan. Melalui analisis ini,
diharapkan dapat dievaluasi sejauh mana pendekatan fuzzing berbasis AFL++ dan Address
Sanitizer mampu mendeteksi kerentanan kritis dalam lingkungan pengujian yang terbatas waktu.

Penelitian ini berhasil mengidentifikasi sejumlah kerentanan dan perilaku tidak normal
(crash) pada perangkat lunak PDFCook versi 0.4.5 melalui penerapan white-box fuzzing dengan
AFL++ dalam waktu 10 menit 2 detik. Proses fuzzing menghasilkan total 2.952 crash,
dengan 110 file unik yang disimpan dalam folder output sebagai bahan analisis lebih lanjut. Hasil
tersebut menunjukkan bahwa AFL++ mampu secara cepat menghasilkan variasi input yang
memicu eksekusi jalur kode rentan, bahkan dalam durasi pengujian yang relatif singkat.
3.1. Distribusi Jenis Crash

Jenis-jenis crash yang berhasil dideteksi dapat dikategorikan menjadi empat kelompok
utama, sebagaimana disajikan pada Tabel 1.

Tabel 1. Distribusi Jenis Crash yang Ditemukan

No Jenis Crash Jumlah Presentase
1 SEGV Signal (Segmentation Fault) 104 94.5%

2 Heap Buffer Overflow 4 3.6%

3 SIGABRT Signal 1 0.9%

4 Out of Memory 1 0.9%
Total 110 100%

Tabel 1 menjelaskan bahwa distribusi crash menunjukkan dominasi SEGV Signal (94,5%),
mengindikasikan mayoritas kegagalan sistem berasal dari kesalahan akses memori seperti
dereferensi pointer tidak valid. Heap buffer overflow, SIGABRT, dan out-of-memory muncul
dalam proporsi kecil, menandakan kasus khusus yang relatif jarang. Pola ini menunjukkan bahwa
stabilitas aplikasi sangat dipengaruhi oleh manajemen memori, sehingga diperlukan mekanisme
validasi dan pengujian lebih lanjut.
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Gambar 2. Distribusi Jenis Crash yang Ditemukan

Gambar 2 menjelaskan bahwa SEGV Signal (Segmentation Fault) mendominasi jenis crash yang
ditemukan dengan persentase 94,5%. Hal ini mengindikasikan bahwa PDFCook seringkali gagal
melakukan validasi batas memori saat memproses input PDF yang termutasi, sehingga
menyebabkan akses ilegal ke alamat memori. SEGV merupakan kerentanan serius karena dapat
dieksploitasi untuk menyebabkan Denial of Service (DoS) atau bahkan eksekusi kode arbitrer jika
penyerang berhasil mengontrol alamat yang diakses. Sementara itu, Heap Buffer Overflow yang
terdeteksi (4 kasus) termasuk dalam kategori kerentanan tinggi (*CWE-122*). Kerentanan ini
terjadi ketika data yang ditulis ke heap melebihi kapasitas buffer yang dialokasikan, berpotensi
memungkinkan penyerang menimpa struktur data penting atau mengeksekusi kode berbahaya.
Meskipun jumlahnya relatif sedikit (3,6%), kerentanan ini dianggap lebih berbahaya karena
potensi eksploitasinya yang tinggi untuk mengambil alih kontrol eksekusi program.

3.2.  Waktu Temuan Crash
Distribusi waktu temuan crash selama sesi fuzzing 10 menit memberikan wawasan tentang
pola kerentanan dalam perangkat lunak.

Gambar 2. Akumulasi Temuan Crash per Menit

Gambar 2 menunjukkan bahwa temuan crash meningkat secara konsisten sepanjang sesi fuzzing,
dengan rata-rata 295 crash per menit. Pola kenaikan yang stabil ini mengindikasikan bahwa
AFL++ berhasil terus menemukan jalur eksekusi baru yang rentan tanpa mengalami plateau dini.
Peningkatan paling signifikan terjadi pada menit pertama hingga ketiga, di mana 950 crash telah
terdeteksi, menunjukkan bahwa banyak kerentanan dapat ditemukan dengan cepat menggunakan
input awal yang tepat.
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3.3. Karakteristik File Crash
Untuk memahami karakteristik file crash yang dihasilkan, berikut adalah contoh beberapa
file unik yang disimpan AFL++ beserta informasi singkatnya:

Tabel 2. Beberapa contoh File Crash dan Karakteristiknya
ID File Jenis Sinyal ~ Waktu Temuan (detik) Operasi Mutasi  Ukuran File (KB)

id:000000 SIGSEGV (11) 28 havoc, rep:4 2.4
id:000004 SIGABRT (6) 45 havoc, rep:2 3.1
id:000022 SIGABRT (6) 161 havoc, rep:2 15.7
id:000027 SIGSEGV (11) 215 havoc, rep:2 8.9
id:000050 SIGSEGV (11) 342 splice, rep:1 12.3
id:000099 SIGSEGV (11) 598 arith, rep:8 5.6

Keterangan: Sinyal 11 = SIGSEGV (Segmentation Fault), Sinyal 6 = SIGABRT

Tabel 2 menunjukkan bahwa mayoritas crash terjadi melalui operasi mutasi havoc, yang
merupakan strategi mutasi agresif dalam AFL++ untuk menghasilkan perubahan acak dan dalam
pada input. Hal ini menguatkan temuan bahwa PDFCook rentan terhadap input yang tidak
terstruktur atau korup. Perbedaan ukuran file crash (dari 2,4 KB hingga 15,7 KB) menunjukkan
bahwa kerentanan dapat dipicu oleh berbagai variasi struktur dan ukuran file PDF.
3.4. Efektivitas Mutasi

Distribusi jenis operasi mutasi yang menghasilkan crash memberikan insight tentang
efektivitas strategi mutasi AFL++.

Tabel 3. Distribusi Operasi Mutasi yang Menghasilkan Crash

Operasi Mutasi Jumlah Crash Dihasilkan Presentase
havoc 98 89.1%
splice 7 6.4%
arith 4 3.6%
interest 1 0.9%
Total 110 100%

Data pada Tabel 3 menunjukkan bahwa operasi havoc mendominasi sebagai teknik mutasi paling
efektif dalam menemukan crash (89,1%). Ini sesuai dengan karakteristik havoc yang melakukan
perubahan acak skala besar pada input, sehingga lebih mungkin menemukan kombinasi byte tidak
terduga yang memicu kerentanan. Operasi splice (menggabungkan dua input) juga berkontribusi
signifikan (6,4%), menunjukkan bahwa kombinasi bagian dari file PDF yang valid dapat
menghasilkan kondisi tidak terduga.
3.5. Pembahasan Keamanan

Dari segi efektivitas metode, kombinasi AFL++ dengan Address Sanitizer terbukti sangat
membantu dalam mengidentifikasi dan melokalisasi kerentanan memori. ASan tidak hanya
mendeteksi crash, tetapi juga memberikan laporan detail seperti stack trace, alamat memori, dan
ukuran buffer yang terlibat, sehingga mempermudah proses debugging dan validasi kerentanan.
Namun, tingginya jumlah SEGV yang ditemukan (94,5%) juga mengisyaratkan bahwa PDFCook
memerlukan penanganan validasi input dan manajemen memori yang lebih ketat, khususnya
dalam pemrosesan file PDF dari sumber tidak terpercaya. Dominasi SEGV Signal menunjukkan
bahwa perangkat lunak ini memiliki kelemahan fundamental dalam penanganan pointer dan
validasi akses memori. Dalam konteks keamanan, ini merupakan temuan Kkritis karena
segmentation fault dapat menjadi pintu masuk untuk serangan yang lebih kompleks seperti
Return-Oriented Programming (ROP) atau jump-oriented attacks jika dikombinasikan dengan
teknik eksploitasi lanjutan. Secara keseluruhan, hasil ini membuktikan bahwa fuzzing berbasis
cakupan kode (coverage-guided) dengan AFL++ merupakan pendekatan yang efisien dan efektif
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untuk mengungkap kerentanan dalam perangkat lunak berbasis biner. Dalam waktu kurang dari
11 menit, penelitian ini berhasil mengidentifikasi berbagai kerentanan kritis yang berpotensi
dieksploitasi, sekaligus menyediakan dasar bagi pengembang untuk melakukan perbaikan
sebelum perangkat lunak digunakan dalam lingkungan produksi. Temuan bahwa 89,1% crash
dihasilkan oleh mutasi tipe havoc juga memberikan panduan praktis bagi pengembang untuk
fokus pada pengujian input yang sangat tidak terstruktur dan tidak terduga.

4. Kesimpulan

Penelitian ini telah berhasil mendemonstrasikan efektivitas teknik white-box
fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) dalam
mengidentifikasi kerentanan keamanan pada perangkat lunak pengolah dokumen berbasis biner,
khususnya PDFCook versi 0.4.5. Dalam waktu pengujian yang singkat, yaitu 10 menit 2 detik,
metode ini mampu mendeteksi 2.952 crash dengan 110 file crash unik yang mencakup berbagai
jenis kerentanan kritis, seperti Segmentation Fault (SEGV) yang mendominasi (94,5%), Heap
Buffer Overflow (3,6%), serta SIGABRT dan Out of Memory. Hasil ini mengonfirmasi bahwa
pendekatan fuzzing berbasis cakupan kode (coverage-guided) dengan instrumentasi memori yang
tepat dapat secara efisien menemukan kelemahan pada perangkat lunak yang kompleks dalam
kerangka waktu yang singkat. Temuan penelitian ini tidak hanya menegaskan kegunaan AFL++
sebagai alat fuzzing yang andal dan ekonomis, tetapi juga menyoroti urgensi penerapan pengujian
keamanan otomatis dalam siklus pengembangan perangkat lunak. Dengan biaya rendah dan
waktu eksekusi yang singkat, teknik ini dapat diintegrasikan ke dalam proses continuous
integration/continuous deployment (CI/CD) untuk mendeteksi kerentanan sejak dini. Bagi
pengembang, penelitian ini memberikan panduan praktis untuk menguji ketahanan perangkat
lunak terhadap input tidak terduga, sekaligus memperkuat langkah preventif dalam membangun
perangkat lunak yang lebih aman dan andal sebelum rilis ke lingkungan produksi.
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