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Abstrak 

Keamanan perangkat lunak menjadi semakin penting di era digital, terutama dalam 

menghadapi serangan siber seperti buffer overflow. Pengujian keamanan yang komprehensif 

diperlukan untuk menemukan kerentanan tersebut, dengan teknik fuzzing sebagai salah satu 

pendekatan yang efektif. Penelitian ini mengimplementasikan whitebox 

fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) untuk 

mendeteksi kerentanan pada perangkat lunak pengolah dokumen berbasis binary, yaitu 

PDFCook versi 0.4.5. Hasil penelitian menunjukkan bahwa dalam waktu 10 menit 2 detik, 

AFL++ berhasil menemukan 2.952 crash dengan 110 file crash unik yang tersimpan. Jenis 

kerentanan yang teridentifikasi didominasi oleh Segmentation Fault (SEGV) sebanyak 94,5%, 

diikuti oleh Heap Buffer Overflow (3,6%), SIGABRT, dan Out of Memory. Temuan ini 

membuktikan bahwa fuzzing berbasis AFL++ merupakan metode yang efisien, ekonomis, dan 

efektif untuk mengungkap kerentanan keamanan pada perangkat lunak sebelum dirilis ke 

lingkungan produksi. 

 

Kata Kunci: Keamanan Aplikasi, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address 

Sanitizer. 

Abstract 

Software security is increasingly crucial in the digital age, particularly against 

cyberattacks such as buffer overflow. Comprehensive security testing is required to uncover such 

vulnerabilities, with fuzzing techniques serving as one effective approach. This study 

implements whitebox fuzzing using AFL++ combined with Address Sanitizer (ASan) to detect 

vulnerabilities in binary-based document processing software, specifically PDFCook version 

0.4.5. The results show that within 10 minutes and 2 seconds, AFL++ successfully detected 2,952 

crashes with 110 unique crash files stored. The identified vulnerabilities were dominated by 

Segmentation Fault (SEGV) at 94.5%, followed by Heap Buffer Overflow (3.6%), SIGABRT, and 

Out of Memory. These findings demonstrate that AFL++-based fuzzing is an efficient, cost-

effective, and practical method for uncovering security vulnerabilities in software prior to release 

into production environments. 

 

Keywords: Application Security, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address 

Sanitizer. 
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1. Pendahuluan 

Keamanan perangkat lunak telah menjadi aspek yang semakin krusial dalam era digital saat 

ini, seiring dengan meningkatnya kompleksitas dan frekuensi serangan siber. Salah satu 

kerentanan yang terus menjadi ancaman serius adalah buffer overflow, di mana data yang 

dimasukkan melebihi kapasitas buffer yang dialokasikan, sehingga dapat menyebabkan eksekusi 

kode berbahaya atau pengambilalihan sistem (Manes et al., 2021). Untuk mengidentifikasi 

kerentanan semacam ini, diperlukan pendekatan pengujian keamanan yang komprehensif dan 

efektif, mengingat ukuran dan kompleksitas perangkat lunak modern seringkali menyulitkan 

analisis manual. Salah satu teknik pengujian keamanan yang telah terbukti efektif adalah fuzzing, 

yaitu metode otomatis dengan memberikan input tidak valid atau acak kepada program untuk 

menemukan bug dan kerentanan (Nagy et al., 2021). Fuzzing memungkinkan deteksi kerentanan 

yang mungkin terlewatkan dalam pengujian konvensional, karena dapat menghasilkan variasi 

input yang luas dan tidak terduga. Dengan berkembangnya berbagai alat dan pendekatan fuzzing, 

teknik ini semakin diakui sebagai komponen penting dalam siklus pengembangan perangkat 

lunak yang aman. 

Berdasarkan tingkat akses terhadap kode sumber, fuzzing dapat dikategorikan 

menjadi black-box, grey-box, dan white-box (Manes et al., 2021). White-box 

fuzzing memanfaatkan akses penuh terhadap kode sumber, memungkinkan instrumentasi dan 

analisis yang lebih mendalam, seperti penggunaan Address Sanitizer (ASan) untuk mendeteksi 

kesalahan memori secara real-time (Zhang et al., 2022). Pendekatan ini sangat berguna untuk 

mengungkap kerentanan seperti heap buffer overflow, use-after-free, dan out-of-bounds 

access yang seringkali sulit dideteksi tanpa analisis kode. Dalam penelitian ini, penulis 

mengimplementasikan white-box fuzzing menggunakan AFL++ (American Fuzzy Lop++), yang 

merupakan alat coverage-guided fuzzer yang telah terbukti sukses dalam menemukan ratusan 

kerentanan di berbagai perangkat lunak (Fioraldi et al., 2020). AFL++ menggunakan pendekatan 

mutasi berbasis cakupan kode (coverage-guided) untuk menghasilkan input baru yang dapat 

menjangkau jalur eksekusi yang sebelumnya tidak teruji, sehingga meningkatkan peluang 

menemukan kerentanan yang tersembunyi.  

Berdasarkan urasian diatas, penelitian ini bertujuan untuk menguji efektivitas AFL++ 

dalam menemukan kerentanan pada perangkat lunak pengolah dokumen berbasis binary, 

khususnya PDFCook. Dengan menggabungkan kekuatan AFL++ dan instrumentasi Address 

Sanitizer, diharapkan dapat diidentifikasi berbagai jenis kerentanan memori dalam waktu singkat, 

sekaligus memberikan kontribusi praktis bagi pengembang dalam meningkatkan keamanan 

perangkat lunak sebelum digunakan secara luas. 

 

2. Metode Penelitian 

Penelitian ini menggunakan pendekatan eksperimental untuk menguji efektivitas 

teknik white-box fuzzing dalam mengidentifikasi kerentanan keamanan pada perangkat lunak 

pengolah dokumen berbasis biner. Tahapan penelitian dirancang secara sistematis dan mengikuti 

kerangka kerja terstruktur yang meliputi: pemilihan perangkat lunak target, instalasi dan 

konfigurasi alat fuzzing (AFL++), persiapan corpus input, pelaksanaan fuzzing, serta analisis 

hasil crash yang ditemukan. Metode yang diterapkan memanfaatkan integrasi antara AFL++ 

sebagai coverage-guided fuzzer dan Address Sanitizer (ASan) sebagai instrumen deteksi 

kesalahan memori, dengan tujuan menghasilkan pengujian yang efisien dan terarah. Seluruh 

proses dilakukan dalam lingkungan terkontrol untuk memastikan konsistensi dan keberulangan 

eksperimen, sehingga temuan yang dihasilkan dapat diandalkan untuk evaluasi lebih lanjut. 

Penelitian ini dilaksanakan dengan mengikuti kerangka kerja terstruktur yang terdiri dari 

lima tahap utama, dimulai dari pemilihan perangkat lunak hingga analisis hasil fuzzing. Setiap 

tahap dirancang untuk memastikan proses pengujian berjalan sistematis, terukur, dan dapat 

direplikasi. Adapun alur penelitian secara keseluruhan dapat dilihat pada Gambar 1. 
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Gambar 1. Alur Penelitian 

 

2.1. Pemilihan Perangkat Lunak 

Tahap pertama adalah penentuan perangkat lunak target yang akan diuji. Peneliti 

memilih PDFCook versi 0.4.5, sebuah perangkat lunak pengolah dokumen PDF berbasis biner 

yang ditulis dalam bahasa C/C++. Pemilihan didasarkan pada kriteria bahwa perangkat lunak 

harus dapat dikompilasi dengan GNU Compiler Collection (GCC) yang mendukung 

instrumentasi Address Sanitizer (ASan), serta memiliki fitur pemrosesan file eksternal yang 

rentan terhadap input tidak terduga. PDFCook berjalan pada platform Linux dan mendukung 

berbagai operasi seperti penggabungan, pemisahan, dan dekripsi file PDF. 

 

2.2. Instalasi dan Konfigurasi AFL++ 

Pada tahap ini, AFL++ diinstal dan dikonfigurasi untuk mendukung white-box fuzzing. 

Perangkat lunak target dikompilasi ulang menggunakan GCC dengan opsi -

fsanitize=address untuk mengaktifkan ASan, sehingga setiap kesalahan memori selama fuzzing 

dapat terdeteksi dan dilaporkan. Instrumentasi cakupan kode (code coverage instrumentation) 

juga diterapkan agar AFL++ dapat memantau jalur eksekusi baru yang dihasilkan dari mutasi 

input. 

 

2.3. Persiapan Input Awal (Seed Corpus) 

Input awal berperan penting dalam memandu mutasi AFL++ menuju area kode yang 

potensial rentan. Peneliti menyiapkan corpus berupa file PDF yang dihasilkan secara otomatis 

menggunakan skrip Python dengan modul FPDF. File PDF tersebut berisi konten sederhana 

seperti teks dan judul, yang selanjutnya digunakan sebagai bahan awal untuk proses mutasi. 

Pemilihan format PDF dilakukan karena PDFCook secara khusus menerima dan memproses file 

dengan ekstensi tersebut. 
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2.4. Pelaksanaan Proses Fuzzing 

Proses fuzzing dijalankan dengan perintah: afl-fuzz -i input_corpus -o 

output_fuzzing_bugs -- ./pdfcook @@ Fuzzing berlangsung selama 10 menit 2 detik dalam 

lingkungan terisolasi. AFL++ secara otomatis memutasi file input awal, menjalankan PDFCook 

dengan input yang dimutasi, dan memantau terjadinya crash atau perilaku tidak normal. Setiap 

crash yang terdeteksi disimpan dalam folder output untuk analisis lebih lanjut. 

 

2.5. Pengumpulan dan Analisis Hasil 

Setelah proses fuzzing selesai, semua file crash yang tersimpan dianalisis 

menggunakan Address Sanitizer dan GDB (GNU Debugger) untuk mengidentifikasi jenis 

kerentanan, seperti heap buffer overflow, segmentation fault (SEGV), out-of-memory, 

atau SIGABRT. Hasil analisis kemudian dikategorikan dan didokumentasikan untuk 

mengevaluasi efektivitas AFL++ dalam menemukan kerentanan pada perangkat lunak target 

 

3. Hasil dan Pembahasan 

Bab ini menyajikan temuan empiris dari implementasi white-box fuzzing menggunakan 

AFL++ pada perangkat lunak PDFCook, beserta analisis mendalam terhadap hasil yang 

diperoleh. Data yang dikumpulkan meliputi jumlah crash yang terdeteksi, jenis kerentanan yang 

berhasil diidentifikasi, serta karakteristik input yang memicu perilaku tidak normal pada 

perangkat lunak. Pembahasan tidak hanya berfokus pada deskripsi kuantitatif hasil fuzzing, tetapi 

juga mengaitkan temuan tersebut dengan konteks keamanan perangkat lunak, seperti potensi 

eksploitasi, dampak kerentanan, dan efektivitas metode yang digunakan. Melalui analisis ini, 

diharapkan dapat dievaluasi sejauh mana pendekatan fuzzing berbasis AFL++ dan Address 

Sanitizer mampu mendeteksi kerentanan kritis dalam lingkungan pengujian yang terbatas waktu. 

Penelitian ini berhasil mengidentifikasi sejumlah kerentanan dan perilaku tidak normal 

(crash) pada perangkat lunak PDFCook versi 0.4.5 melalui penerapan white-box fuzzing dengan 

AFL++ dalam waktu 10 menit 2 detik. Proses fuzzing menghasilkan total 2.952 crash, 

dengan 110 file unik yang disimpan dalam folder output sebagai bahan analisis lebih lanjut. Hasil 

tersebut menunjukkan bahwa AFL++ mampu secara cepat menghasilkan variasi input yang 

memicu eksekusi jalur kode rentan, bahkan dalam durasi pengujian yang relatif singkat. 

3.1. Distribusi Jenis Crash 
Jenis-jenis crash yang berhasil dideteksi dapat dikategorikan menjadi empat kelompok 

utama, sebagaimana disajikan pada Tabel 1. 

 

Tabel 1. Distribusi Jenis Crash yang Ditemukan 

No Jenis Crash Jumlah Presentase 

1 SEGV Signal (Segmentation Fault) 104 94.5% 

2 Heap Buffer Overflow 4 3.6% 

3 SIGABRT Signal 1 0.9% 

4 Out of Memory 1 0.9% 

Total  110 100% 

 
Tabel 1 menjelaskan bahwa distribusi crash menunjukkan dominasi SEGV Signal (94,5%), 

mengindikasikan mayoritas kegagalan sistem berasal dari kesalahan akses memori seperti 

dereferensi pointer tidak valid. Heap buffer overflow, SIGABRT, dan out-of-memory muncul 

dalam proporsi kecil, menandakan kasus khusus yang relatif jarang. Pola ini menunjukkan bahwa 

stabilitas aplikasi sangat dipengaruhi oleh manajemen memori, sehingga diperlukan mekanisme 

validasi dan pengujian lebih lanjut. 
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Gambar 2. Distribusi Jenis Crash yang Ditemukan 

 
Gambar 2 menjelaskan bahwa SEGV Signal (Segmentation Fault) mendominasi jenis crash yang 

ditemukan dengan persentase 94,5%. Hal ini mengindikasikan bahwa PDFCook seringkali gagal 

melakukan validasi batas memori saat memproses input PDF yang termutasi, sehingga 

menyebabkan akses ilegal ke alamat memori. SEGV merupakan kerentanan serius karena dapat 

dieksploitasi untuk menyebabkan Denial of Service (DoS) atau bahkan eksekusi kode arbitrer jika 

penyerang berhasil mengontrol alamat yang diakses. Sementara itu, Heap Buffer Overflow yang 

terdeteksi (4 kasus) termasuk dalam kategori kerentanan tinggi (*CWE-122*). Kerentanan ini 

terjadi ketika data yang ditulis ke heap melebihi kapasitas buffer yang dialokasikan, berpotensi 

memungkinkan penyerang menimpa struktur data penting atau mengeksekusi kode berbahaya. 

Meskipun jumlahnya relatif sedikit (3,6%), kerentanan ini dianggap lebih berbahaya karena 

potensi eksploitasinya yang tinggi untuk mengambil alih kontrol eksekusi program. 

 
3.2. Waktu Temuan Crash 

Distribusi waktu temuan crash selama sesi fuzzing 10 menit memberikan wawasan tentang 

pola kerentanan dalam perangkat lunak. 

 

 
Gambar 2. Akumulasi Temuan Crash per Menit 

 

Gambar 2 menunjukkan bahwa temuan crash meningkat secara konsisten sepanjang sesi fuzzing, 

dengan rata-rata 295 crash per menit. Pola kenaikan yang stabil ini mengindikasikan bahwa 

AFL++ berhasil terus menemukan jalur eksekusi baru yang rentan tanpa mengalami plateau dini. 

Peningkatan paling signifikan terjadi pada menit pertama hingga ketiga, di mana 950 crash telah 

terdeteksi, menunjukkan bahwa banyak kerentanan dapat ditemukan dengan cepat menggunakan 

input awal yang tepat. 
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3.3. Karakteristik File Crash 

Untuk memahami karakteristik file crash yang dihasilkan, berikut adalah contoh beberapa 

file unik yang disimpan AFL++ beserta informasi singkatnya: 

 

Tabel 2. Beberapa contoh File Crash dan Karakteristiknya 

ID File Jenis Sinyal Waktu Temuan (detik) Operasi Mutasi Ukuran File (KB) 

id:000000 SIGSEGV (11) 28 havoc, rep:4 2.4 

id:000004 SIGABRT (6) 45 havoc, rep:2 3.1 

id:000022 SIGABRT (6) 161 havoc, rep:2 15.7 

id:000027 SIGSEGV (11) 215 havoc, rep:2 8.9 

id:000050 SIGSEGV (11) 342 splice, rep:1 12.3 

id:000099 SIGSEGV (11) 598 arith, rep:8 5.6 

Keterangan: Sinyal 11 = SIGSEGV (Segmentation Fault), Sinyal 6 = SIGABRT 

 

Tabel 2 menunjukkan bahwa mayoritas crash terjadi melalui operasi mutasi havoc, yang 

merupakan strategi mutasi agresif dalam AFL++ untuk menghasilkan perubahan acak dan dalam 

pada input. Hal ini menguatkan temuan bahwa PDFCook rentan terhadap input yang tidak 

terstruktur atau korup. Perbedaan ukuran file crash (dari 2,4 KB hingga 15,7 KB) menunjukkan 

bahwa kerentanan dapat dipicu oleh berbagai variasi struktur dan ukuran file PDF. 

3.4. Efektivitas Mutasi 

Distribusi jenis operasi mutasi yang menghasilkan crash memberikan insight tentang 

efektivitas strategi mutasi AFL++. 

 

Tabel 3. Distribusi Operasi Mutasi yang Menghasilkan Crash 

Operasi Mutasi Jumlah Crash Dihasilkan Presentase 

havoc 98 89.1% 

splice 7 6.4% 

arith 4 3.6% 

interest 1 0.9% 

Total 110 100% 

 

Data pada Tabel 3 menunjukkan bahwa operasi havoc mendominasi sebagai teknik mutasi paling 

efektif dalam menemukan crash (89,1%). Ini sesuai dengan karakteristik havoc yang melakukan 

perubahan acak skala besar pada input, sehingga lebih mungkin menemukan kombinasi byte tidak 

terduga yang memicu kerentanan. Operasi splice (menggabungkan dua input) juga berkontribusi 

signifikan (6,4%), menunjukkan bahwa kombinasi bagian dari file PDF yang valid dapat 

menghasilkan kondisi tidak terduga. 

3.5. Pembahasan Keamanan 

Dari segi efektivitas metode, kombinasi AFL++ dengan Address Sanitizer terbukti sangat 

membantu dalam mengidentifikasi dan melokalisasi kerentanan memori. ASan tidak hanya 

mendeteksi crash, tetapi juga memberikan laporan detail seperti stack trace, alamat memori, dan 

ukuran buffer yang terlibat, sehingga mempermudah proses debugging dan validasi kerentanan. 

Namun, tingginya jumlah SEGV yang ditemukan (94,5%) juga mengisyaratkan bahwa PDFCook 

memerlukan penanganan validasi input dan manajemen memori yang lebih ketat, khususnya 

dalam pemrosesan file PDF dari sumber tidak terpercaya. Dominasi SEGV Signal menunjukkan 

bahwa perangkat lunak ini memiliki kelemahan fundamental dalam penanganan pointer dan 

validasi akses memori. Dalam konteks keamanan, ini merupakan temuan kritis karena 

segmentation fault dapat menjadi pintu masuk untuk serangan yang lebih kompleks seperti 

Return-Oriented Programming (ROP) atau jump-oriented attacks jika dikombinasikan dengan 

teknik eksploitasi lanjutan. Secara keseluruhan, hasil ini membuktikan bahwa fuzzing berbasis 

cakupan kode (coverage-guided) dengan AFL++ merupakan pendekatan yang efisien dan efektif 
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untuk mengungkap kerentanan dalam perangkat lunak berbasis biner. Dalam waktu kurang dari 

11 menit, penelitian ini berhasil mengidentifikasi berbagai kerentanan kritis yang berpotensi 

dieksploitasi, sekaligus menyediakan dasar bagi pengembang untuk melakukan perbaikan 

sebelum perangkat lunak digunakan dalam lingkungan produksi. Temuan bahwa 89,1% crash 

dihasilkan oleh mutasi tipe havoc juga memberikan panduan praktis bagi pengembang untuk 

fokus pada pengujian input yang sangat tidak terstruktur dan tidak terduga. 

 

4. Kesimpulan 

Penelitian ini telah berhasil mendemonstrasikan efektivitas teknik white-box 

fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) dalam 

mengidentifikasi kerentanan keamanan pada perangkat lunak pengolah dokumen berbasis biner, 

khususnya PDFCook versi 0.4.5. Dalam waktu pengujian yang singkat, yaitu 10 menit 2 detik, 

metode ini mampu mendeteksi 2.952 crash dengan 110 file crash unik yang mencakup berbagai 

jenis kerentanan kritis, seperti Segmentation Fault (SEGV) yang mendominasi (94,5%), Heap 

Buffer Overflow (3,6%), serta SIGABRT dan Out of Memory. Hasil ini mengonfirmasi bahwa 

pendekatan fuzzing berbasis cakupan kode (coverage-guided) dengan instrumentasi memori yang 

tepat dapat secara efisien menemukan kelemahan pada perangkat lunak yang kompleks dalam 

kerangka waktu yang singkat. Temuan penelitian ini tidak hanya menegaskan kegunaan AFL++ 

sebagai alat fuzzing yang andal dan ekonomis, tetapi juga menyoroti urgensi penerapan pengujian 

keamanan otomatis dalam siklus pengembangan perangkat lunak. Dengan biaya rendah dan 

waktu eksekusi yang singkat, teknik ini dapat diintegrasikan ke dalam proses continuous 

integration/continuous deployment (CI/CD) untuk mendeteksi kerentanan sejak dini. Bagi 

pengembang, penelitian ini memberikan panduan praktis untuk menguji ketahanan perangkat 

lunak terhadap input tidak terduga, sekaligus memperkuat langkah preventif dalam membangun 

perangkat lunak yang lebih aman dan andal sebelum rilis ke lingkungan produksi. 
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