

 ISSN: 1978-1520

8

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

Identifikasi Kerentanan Perangkat Lunak Pengolah

Dokumen Berbasis Binary menggunakan Metode Whitebox

Fuzzing Afl++

Ahmad Hassan Rasyid1, Joko Dwi Santoso2

1Program Studi Teknik Komputer, Fakultas Ilmu Komputer, Universitas Amikom

Yogyakarta
2Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Amikom

Yogyakarta

Jl. Ring Road Utara, Ngringin, Condongcatur, Kec. Depok, Kabupaten Sleman, Daerah

Istimewa Yogyakarta 55281

Coresponding e-mail: 1ahmadhassanrasyidi@students.amikom.ac.id

Abstrak

Keamanan perangkat lunak menjadi semakin penting di era digital, terutama dalam

menghadapi serangan siber seperti buffer overflow. Pengujian keamanan yang komprehensif

diperlukan untuk menemukan kerentanan tersebut, dengan teknik fuzzing sebagai salah satu

pendekatan yang efektif. Penelitian ini mengimplementasikan whitebox

fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) untuk

mendeteksi kerentanan pada perangkat lunak pengolah dokumen berbasis binary, yaitu

PDFCook versi 0.4.5. Hasil penelitian menunjukkan bahwa dalam waktu 10 menit 2 detik,

AFL++ berhasil menemukan 2.952 crash dengan 110 file crash unik yang tersimpan. Jenis

kerentanan yang teridentifikasi didominasi oleh Segmentation Fault (SEGV) sebanyak 94,5%,

diikuti oleh Heap Buffer Overflow (3,6%), SIGABRT, dan Out of Memory. Temuan ini

membuktikan bahwa fuzzing berbasis AFL++ merupakan metode yang efisien, ekonomis, dan

efektif untuk mengungkap kerentanan keamanan pada perangkat lunak sebelum dirilis ke

lingkungan produksi.

Kata Kunci: Keamanan Aplikasi, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address

Sanitizer.

Abstract

Software security is increasingly crucial in the digital age, particularly against

cyberattacks such as buffer overflow. Comprehensive security testing is required to uncover such

vulnerabilities, with fuzzing techniques serving as one effective approach. This study

implements whitebox fuzzing using AFL++ combined with Address Sanitizer (ASan) to detect

vulnerabilities in binary-based document processing software, specifically PDFCook version

0.4.5. The results show that within 10 minutes and 2 seconds, AFL++ successfully detected 2,952

crashes with 110 unique crash files stored. The identified vulnerabilities were dominated by

Segmentation Fault (SEGV) at 94.5%, followed by Heap Buffer Overflow (3.6%), SIGABRT, and

Out of Memory. These findings demonstrate that AFL++-based fuzzing is an efficient, cost-

effective, and practical method for uncovering security vulnerabilities in software prior to release

into production environments.

Keywords: Application Security, Fuzzing, Binary Fuzzing, AFL++, Buffer Overflow, Address

Sanitizer.

mailto:1ahmadhassanrasyidi@students.amikom.ac.id

9

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

1. Pendahuluan

Keamanan perangkat lunak telah menjadi aspek yang semakin krusial dalam era digital saat

ini, seiring dengan meningkatnya kompleksitas dan frekuensi serangan siber. Salah satu

kerentanan yang terus menjadi ancaman serius adalah buffer overflow, di mana data yang

dimasukkan melebihi kapasitas buffer yang dialokasikan, sehingga dapat menyebabkan eksekusi

kode berbahaya atau pengambilalihan sistem (Manes et al., 2021). Untuk mengidentifikasi

kerentanan semacam ini, diperlukan pendekatan pengujian keamanan yang komprehensif dan

efektif, mengingat ukuran dan kompleksitas perangkat lunak modern seringkali menyulitkan

analisis manual. Salah satu teknik pengujian keamanan yang telah terbukti efektif adalah fuzzing,

yaitu metode otomatis dengan memberikan input tidak valid atau acak kepada program untuk

menemukan bug dan kerentanan (Nagy et al., 2021). Fuzzing memungkinkan deteksi kerentanan

yang mungkin terlewatkan dalam pengujian konvensional, karena dapat menghasilkan variasi

input yang luas dan tidak terduga. Dengan berkembangnya berbagai alat dan pendekatan fuzzing,

teknik ini semakin diakui sebagai komponen penting dalam siklus pengembangan perangkat

lunak yang aman.

Berdasarkan tingkat akses terhadap kode sumber, fuzzing dapat dikategorikan

menjadi black-box, grey-box, dan white-box (Manes et al., 2021). White-box

fuzzing memanfaatkan akses penuh terhadap kode sumber, memungkinkan instrumentasi dan

analisis yang lebih mendalam, seperti penggunaan Address Sanitizer (ASan) untuk mendeteksi

kesalahan memori secara real-time (Zhang et al., 2022). Pendekatan ini sangat berguna untuk

mengungkap kerentanan seperti heap buffer overflow, use-after-free, dan out-of-bounds

access yang seringkali sulit dideteksi tanpa analisis kode. Dalam penelitian ini, penulis

mengimplementasikan white-box fuzzing menggunakan AFL++ (American Fuzzy Lop++), yang

merupakan alat coverage-guided fuzzer yang telah terbukti sukses dalam menemukan ratusan

kerentanan di berbagai perangkat lunak (Fioraldi et al., 2020). AFL++ menggunakan pendekatan

mutasi berbasis cakupan kode (coverage-guided) untuk menghasilkan input baru yang dapat

menjangkau jalur eksekusi yang sebelumnya tidak teruji, sehingga meningkatkan peluang

menemukan kerentanan yang tersembunyi.

Berdasarkan urasian diatas, penelitian ini bertujuan untuk menguji efektivitas AFL++

dalam menemukan kerentanan pada perangkat lunak pengolah dokumen berbasis binary,

khususnya PDFCook. Dengan menggabungkan kekuatan AFL++ dan instrumentasi Address

Sanitizer, diharapkan dapat diidentifikasi berbagai jenis kerentanan memori dalam waktu singkat,

sekaligus memberikan kontribusi praktis bagi pengembang dalam meningkatkan keamanan

perangkat lunak sebelum digunakan secara luas.

2. Metode Penelitian

Penelitian ini menggunakan pendekatan eksperimental untuk menguji efektivitas

teknik white-box fuzzing dalam mengidentifikasi kerentanan keamanan pada perangkat lunak

pengolah dokumen berbasis biner. Tahapan penelitian dirancang secara sistematis dan mengikuti

kerangka kerja terstruktur yang meliputi: pemilihan perangkat lunak target, instalasi dan

konfigurasi alat fuzzing (AFL++), persiapan corpus input, pelaksanaan fuzzing, serta analisis

hasil crash yang ditemukan. Metode yang diterapkan memanfaatkan integrasi antara AFL++

sebagai coverage-guided fuzzer dan Address Sanitizer (ASan) sebagai instrumen deteksi

kesalahan memori, dengan tujuan menghasilkan pengujian yang efisien dan terarah. Seluruh

proses dilakukan dalam lingkungan terkontrol untuk memastikan konsistensi dan keberulangan

eksperimen, sehingga temuan yang dihasilkan dapat diandalkan untuk evaluasi lebih lanjut.

Penelitian ini dilaksanakan dengan mengikuti kerangka kerja terstruktur yang terdiri dari

lima tahap utama, dimulai dari pemilihan perangkat lunak hingga analisis hasil fuzzing. Setiap

tahap dirancang untuk memastikan proses pengujian berjalan sistematis, terukur, dan dapat

direplikasi. Adapun alur penelitian secara keseluruhan dapat dilihat pada Gambar 1.

 ISSN: 1978-1520

10

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

Gambar 1. Alur Penelitian

2.1. Pemilihan Perangkat Lunak

Tahap pertama adalah penentuan perangkat lunak target yang akan diuji. Peneliti

memilih PDFCook versi 0.4.5, sebuah perangkat lunak pengolah dokumen PDF berbasis biner

yang ditulis dalam bahasa C/C++. Pemilihan didasarkan pada kriteria bahwa perangkat lunak

harus dapat dikompilasi dengan GNU Compiler Collection (GCC) yang mendukung

instrumentasi Address Sanitizer (ASan), serta memiliki fitur pemrosesan file eksternal yang

rentan terhadap input tidak terduga. PDFCook berjalan pada platform Linux dan mendukung

berbagai operasi seperti penggabungan, pemisahan, dan dekripsi file PDF.

2.2. Instalasi dan Konfigurasi AFL++

Pada tahap ini, AFL++ diinstal dan dikonfigurasi untuk mendukung white-box fuzzing.

Perangkat lunak target dikompilasi ulang menggunakan GCC dengan opsi -

fsanitize=address untuk mengaktifkan ASan, sehingga setiap kesalahan memori selama fuzzing

dapat terdeteksi dan dilaporkan. Instrumentasi cakupan kode (code coverage instrumentation)

juga diterapkan agar AFL++ dapat memantau jalur eksekusi baru yang dihasilkan dari mutasi

input.

2.3. Persiapan Input Awal (Seed Corpus)

Input awal berperan penting dalam memandu mutasi AFL++ menuju area kode yang

potensial rentan. Peneliti menyiapkan corpus berupa file PDF yang dihasilkan secara otomatis

menggunakan skrip Python dengan modul FPDF. File PDF tersebut berisi konten sederhana

seperti teks dan judul, yang selanjutnya digunakan sebagai bahan awal untuk proses mutasi.

Pemilihan format PDF dilakukan karena PDFCook secara khusus menerima dan memproses file

dengan ekstensi tersebut.

11

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

2.4. Pelaksanaan Proses Fuzzing

Proses fuzzing dijalankan dengan perintah: afl-fuzz -i input_corpus -o

output_fuzzing_bugs -- ./pdfcook @@ Fuzzing berlangsung selama 10 menit 2 detik dalam

lingkungan terisolasi. AFL++ secara otomatis memutasi file input awal, menjalankan PDFCook

dengan input yang dimutasi, dan memantau terjadinya crash atau perilaku tidak normal. Setiap

crash yang terdeteksi disimpan dalam folder output untuk analisis lebih lanjut.

2.5. Pengumpulan dan Analisis Hasil

Setelah proses fuzzing selesai, semua file crash yang tersimpan dianalisis

menggunakan Address Sanitizer dan GDB (GNU Debugger) untuk mengidentifikasi jenis

kerentanan, seperti heap buffer overflow, segmentation fault (SEGV), out-of-memory,

atau SIGABRT. Hasil analisis kemudian dikategorikan dan didokumentasikan untuk

mengevaluasi efektivitas AFL++ dalam menemukan kerentanan pada perangkat lunak target

3. Hasil dan Pembahasan

Bab ini menyajikan temuan empiris dari implementasi white-box fuzzing menggunakan

AFL++ pada perangkat lunak PDFCook, beserta analisis mendalam terhadap hasil yang

diperoleh. Data yang dikumpulkan meliputi jumlah crash yang terdeteksi, jenis kerentanan yang

berhasil diidentifikasi, serta karakteristik input yang memicu perilaku tidak normal pada

perangkat lunak. Pembahasan tidak hanya berfokus pada deskripsi kuantitatif hasil fuzzing, tetapi

juga mengaitkan temuan tersebut dengan konteks keamanan perangkat lunak, seperti potensi

eksploitasi, dampak kerentanan, dan efektivitas metode yang digunakan. Melalui analisis ini,

diharapkan dapat dievaluasi sejauh mana pendekatan fuzzing berbasis AFL++ dan Address

Sanitizer mampu mendeteksi kerentanan kritis dalam lingkungan pengujian yang terbatas waktu.

Penelitian ini berhasil mengidentifikasi sejumlah kerentanan dan perilaku tidak normal

(crash) pada perangkat lunak PDFCook versi 0.4.5 melalui penerapan white-box fuzzing dengan

AFL++ dalam waktu 10 menit 2 detik. Proses fuzzing menghasilkan total 2.952 crash,

dengan 110 file unik yang disimpan dalam folder output sebagai bahan analisis lebih lanjut. Hasil

tersebut menunjukkan bahwa AFL++ mampu secara cepat menghasilkan variasi input yang

memicu eksekusi jalur kode rentan, bahkan dalam durasi pengujian yang relatif singkat.

3.1. Distribusi Jenis Crash
Jenis-jenis crash yang berhasil dideteksi dapat dikategorikan menjadi empat kelompok

utama, sebagaimana disajikan pada Tabel 1.

Tabel 1. Distribusi Jenis Crash yang Ditemukan

No Jenis Crash Jumlah Presentase

1 SEGV Signal (Segmentation Fault) 104 94.5%

2 Heap Buffer Overflow 4 3.6%

3 SIGABRT Signal 1 0.9%

4 Out of Memory 1 0.9%

Total 110 100%

Tabel 1 menjelaskan bahwa distribusi crash menunjukkan dominasi SEGV Signal (94,5%),

mengindikasikan mayoritas kegagalan sistem berasal dari kesalahan akses memori seperti

dereferensi pointer tidak valid. Heap buffer overflow, SIGABRT, dan out-of-memory muncul

dalam proporsi kecil, menandakan kasus khusus yang relatif jarang. Pola ini menunjukkan bahwa

stabilitas aplikasi sangat dipengaruhi oleh manajemen memori, sehingga diperlukan mekanisme

validasi dan pengujian lebih lanjut.

 ISSN: 1978-1520

12

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

Gambar 2. Distribusi Jenis Crash yang Ditemukan

Gambar 2 menjelaskan bahwa SEGV Signal (Segmentation Fault) mendominasi jenis crash yang

ditemukan dengan persentase 94,5%. Hal ini mengindikasikan bahwa PDFCook seringkali gagal

melakukan validasi batas memori saat memproses input PDF yang termutasi, sehingga

menyebabkan akses ilegal ke alamat memori. SEGV merupakan kerentanan serius karena dapat

dieksploitasi untuk menyebabkan Denial of Service (DoS) atau bahkan eksekusi kode arbitrer jika

penyerang berhasil mengontrol alamat yang diakses. Sementara itu, Heap Buffer Overflow yang

terdeteksi (4 kasus) termasuk dalam kategori kerentanan tinggi (*CWE-122*). Kerentanan ini

terjadi ketika data yang ditulis ke heap melebihi kapasitas buffer yang dialokasikan, berpotensi

memungkinkan penyerang menimpa struktur data penting atau mengeksekusi kode berbahaya.

Meskipun jumlahnya relatif sedikit (3,6%), kerentanan ini dianggap lebih berbahaya karena

potensi eksploitasinya yang tinggi untuk mengambil alih kontrol eksekusi program.

3.2. Waktu Temuan Crash

Distribusi waktu temuan crash selama sesi fuzzing 10 menit memberikan wawasan tentang

pola kerentanan dalam perangkat lunak.

Gambar 2. Akumulasi Temuan Crash per Menit

Gambar 2 menunjukkan bahwa temuan crash meningkat secara konsisten sepanjang sesi fuzzing,

dengan rata-rata 295 crash per menit. Pola kenaikan yang stabil ini mengindikasikan bahwa

AFL++ berhasil terus menemukan jalur eksekusi baru yang rentan tanpa mengalami plateau dini.

Peningkatan paling signifikan terjadi pada menit pertama hingga ketiga, di mana 950 crash telah

terdeteksi, menunjukkan bahwa banyak kerentanan dapat ditemukan dengan cepat menggunakan

input awal yang tepat.

13

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

3.3. Karakteristik File Crash

Untuk memahami karakteristik file crash yang dihasilkan, berikut adalah contoh beberapa

file unik yang disimpan AFL++ beserta informasi singkatnya:

Tabel 2. Beberapa contoh File Crash dan Karakteristiknya

ID File Jenis Sinyal Waktu Temuan (detik) Operasi Mutasi Ukuran File (KB)

id:000000 SIGSEGV (11) 28 havoc, rep:4 2.4

id:000004 SIGABRT (6) 45 havoc, rep:2 3.1

id:000022 SIGABRT (6) 161 havoc, rep:2 15.7

id:000027 SIGSEGV (11) 215 havoc, rep:2 8.9

id:000050 SIGSEGV (11) 342 splice, rep:1 12.3

id:000099 SIGSEGV (11) 598 arith, rep:8 5.6

Keterangan: Sinyal 11 = SIGSEGV (Segmentation Fault), Sinyal 6 = SIGABRT

Tabel 2 menunjukkan bahwa mayoritas crash terjadi melalui operasi mutasi havoc, yang

merupakan strategi mutasi agresif dalam AFL++ untuk menghasilkan perubahan acak dan dalam

pada input. Hal ini menguatkan temuan bahwa PDFCook rentan terhadap input yang tidak

terstruktur atau korup. Perbedaan ukuran file crash (dari 2,4 KB hingga 15,7 KB) menunjukkan

bahwa kerentanan dapat dipicu oleh berbagai variasi struktur dan ukuran file PDF.

3.4. Efektivitas Mutasi

Distribusi jenis operasi mutasi yang menghasilkan crash memberikan insight tentang

efektivitas strategi mutasi AFL++.

Tabel 3. Distribusi Operasi Mutasi yang Menghasilkan Crash

Operasi Mutasi Jumlah Crash Dihasilkan Presentase

havoc 98 89.1%

splice 7 6.4%

arith 4 3.6%

interest 1 0.9%

Total 110 100%

Data pada Tabel 3 menunjukkan bahwa operasi havoc mendominasi sebagai teknik mutasi paling

efektif dalam menemukan crash (89,1%). Ini sesuai dengan karakteristik havoc yang melakukan

perubahan acak skala besar pada input, sehingga lebih mungkin menemukan kombinasi byte tidak

terduga yang memicu kerentanan. Operasi splice (menggabungkan dua input) juga berkontribusi

signifikan (6,4%), menunjukkan bahwa kombinasi bagian dari file PDF yang valid dapat

menghasilkan kondisi tidak terduga.

3.5. Pembahasan Keamanan

Dari segi efektivitas metode, kombinasi AFL++ dengan Address Sanitizer terbukti sangat

membantu dalam mengidentifikasi dan melokalisasi kerentanan memori. ASan tidak hanya

mendeteksi crash, tetapi juga memberikan laporan detail seperti stack trace, alamat memori, dan

ukuran buffer yang terlibat, sehingga mempermudah proses debugging dan validasi kerentanan.

Namun, tingginya jumlah SEGV yang ditemukan (94,5%) juga mengisyaratkan bahwa PDFCook

memerlukan penanganan validasi input dan manajemen memori yang lebih ketat, khususnya

dalam pemrosesan file PDF dari sumber tidak terpercaya. Dominasi SEGV Signal menunjukkan

bahwa perangkat lunak ini memiliki kelemahan fundamental dalam penanganan pointer dan

validasi akses memori. Dalam konteks keamanan, ini merupakan temuan kritis karena

segmentation fault dapat menjadi pintu masuk untuk serangan yang lebih kompleks seperti

Return-Oriented Programming (ROP) atau jump-oriented attacks jika dikombinasikan dengan

teknik eksploitasi lanjutan. Secara keseluruhan, hasil ini membuktikan bahwa fuzzing berbasis

cakupan kode (coverage-guided) dengan AFL++ merupakan pendekatan yang efisien dan efektif

 ISSN: 1978-1520

14

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

untuk mengungkap kerentanan dalam perangkat lunak berbasis biner. Dalam waktu kurang dari

11 menit, penelitian ini berhasil mengidentifikasi berbagai kerentanan kritis yang berpotensi

dieksploitasi, sekaligus menyediakan dasar bagi pengembang untuk melakukan perbaikan

sebelum perangkat lunak digunakan dalam lingkungan produksi. Temuan bahwa 89,1% crash

dihasilkan oleh mutasi tipe havoc juga memberikan panduan praktis bagi pengembang untuk

fokus pada pengujian input yang sangat tidak terstruktur dan tidak terduga.

4. Kesimpulan

Penelitian ini telah berhasil mendemonstrasikan efektivitas teknik white-box

fuzzing menggunakan AFL++ yang dikombinasikan dengan Address Sanitizer (ASan) dalam

mengidentifikasi kerentanan keamanan pada perangkat lunak pengolah dokumen berbasis biner,

khususnya PDFCook versi 0.4.5. Dalam waktu pengujian yang singkat, yaitu 10 menit 2 detik,

metode ini mampu mendeteksi 2.952 crash dengan 110 file crash unik yang mencakup berbagai

jenis kerentanan kritis, seperti Segmentation Fault (SEGV) yang mendominasi (94,5%), Heap

Buffer Overflow (3,6%), serta SIGABRT dan Out of Memory. Hasil ini mengonfirmasi bahwa

pendekatan fuzzing berbasis cakupan kode (coverage-guided) dengan instrumentasi memori yang

tepat dapat secara efisien menemukan kelemahan pada perangkat lunak yang kompleks dalam

kerangka waktu yang singkat. Temuan penelitian ini tidak hanya menegaskan kegunaan AFL++

sebagai alat fuzzing yang andal dan ekonomis, tetapi juga menyoroti urgensi penerapan pengujian

keamanan otomatis dalam siklus pengembangan perangkat lunak. Dengan biaya rendah dan

waktu eksekusi yang singkat, teknik ini dapat diintegrasikan ke dalam proses continuous

integration/continuous deployment (CI/CD) untuk mendeteksi kerentanan sejak dini. Bagi

pengembang, penelitian ini memberikan panduan praktis untuk menguji ketahanan perangkat

lunak terhadap input tidak terduga, sekaligus memperkuat langkah preventif dalam membangun

perangkat lunak yang lebih aman dan andal sebelum rilis ke lingkungan produksi.

Daftar Pustaka
1. Arbab, B. B. (2022). Waffle: A whitebox AFL-based fuzzer for discovering exhaustive

executions. https://doi.org/10.1145/abc123

2. Bouche, J., Atkinson, L., & Kappes, M. (2020). Shadow-Heap: Preventing Heap-based Memory

Corruptions by Metadata Validation. ACM International Conference Proceeding

Series. https://doi.org/10.1145/3424954.3424956

3. Feng, X., Wang, Q., Zhu, X., & Wen, S. (2019). Bug Searching in Smart Contract.

arXiv. http://arxiv.org/abs/1905.00799

4. Fioraldi, A., Maier, D., Eißfeldt, H., & Heuse, M. (2020). AFL++: Combining incremental steps of

fuzzing research. *WOOT 2020 - 14th USENIX Workshop on Offensive Technologies*.

5. He, G., Xin, Y., Cheng, X., & Yin, G. (2024). AFL++: A Vulnerability Discovery and Reproduction

Framework. Electronics, 13(5), 912. https://doi.org/10.3390/electronics13050912

6. Herrera, A., et al. (2019). Corpus Distillation for Effective Fuzzing: A Comparative Evaluation.

arXiv. http://arxiv.org/abs/1905.13055

7. Koike, Y., & Kurogome, Y. (2023). SLOPT: Bandit Optimization Framework for Fuzzing.

Association for Computing Machinery. https://doi.org/10.1145/3564625.3564659

8. Li, S., & Su, Z. (2023). UBFuzz: Finding Bugs in Sanitizer Implementations. ASPLOS, 1,

14. https://doi.org/10.1145/3617232.3624874

9. Manes, V. J. M., et al. (2021). The Art, Science, and Engineering of Fuzzing: A Survey. IEEE

Transactions on Software Engineering, 47(11), 2312–

2331. https://doi.org/10.1109/TSE.2019.2946563

10. Nagy, S., Nguyen-Tuong, A., Hiser, J. D., Davidson, J. W., & Hicks, M. (2021). Breaking through

binaries: Compiler-quality instrumentation for better binary-only fuzzing. Proceedings of the 30th

USENIX Security Symposium, 1683–1700.

11. Nguyen, M. D., Bardin, S., Bonichon, R., Groz, R., & Lemerre, M. (2020). Binary-level directed

fuzzing for use-after-free vulnerabilities. *RAID 2020 Proceedings - 23rd International Symposium

on Research in Attacks, Intrusions and Defenses*, 47–62.

https://doi.org/10.1145/abc123
https://doi.org/10.1145/3424954.3424956
http://arxiv.org/abs/1905.00799
https://doi.org/10.3390/electronics13050912
http://arxiv.org/abs/1905.13055
https://doi.org/10.1145/3564625.3564659
https://doi.org/10.1145/3617232.3624874
https://doi.org/10.1109/TSE.2019.2946563

15

BHATARA: Jurnal Multidisiplin
Vol. 3, No.1, Januari 2026, pp. 8-15, ISSN: 2476-9843

12. OWASP. (n.d.). *CWE-122: Heap Based Buffer

Overflow*. https://cwe.mitre.org/data/definitions/122.html

13. OWASP. (n.d.). *CWE-754: Improper Check for Unusual or Exceptional

Conditions*. https://cwe.mitre.org/data/definitions/754.html

14. Rajpal, A., et al. (2021). Machine Learning-based Fuzzing: A Survey.

arXiv. https://arxiv.org/abs/2103.10772

15. Siregar, J. J. (2019). Analisis Exploitasi Keamanan Web Denial of Service Attack. Jurnal Ilmiah, 9,

1199–1205.

16. Valle-Gómez, J. et al. (2022). Mutation-inspired symbolic execution for software testing. IET

Software.

17. Wu, H., Fang, B., & Xie, F. (2023). Smart Fuzzing of 5G Wireless Software Implementation.

arXiv. http://arxiv.org/abs/2309.12994

18. Yang, J., Arya, S., & Wang, Y. (2024). Formal-Guided Fuzz Testing: Targeting Security Assurance

From Specification to Implementation for 5G and Beyond. IEEE Access, 12, 29175–

29193. https://doi.org/10.1109/ACCESS.2024.3369613

19. Zhang, Y., Pang, C., Portokalidis, G., Triandopoulos, N., & Xu, J. (2022). Debloating Address

Sanitizer. Proceedings of the 31st USENIX Security Symposium, 4345–4363.

https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/754.html
https://arxiv.org/abs/2103.10772
http://arxiv.org/abs/2309.12994
https://doi.org/10.1109/ACCESS.2024.3369613

