Penerapan Bi-LSTM Untuk Named Entity Recognition Pada Teks Bahasa Indonesia
DOI:
https://doi.org/10.59095/ijcsr.v4i2.208Keywords:
Bahasa Indonesia, BIO Tagging, BiLSTM, Named Entity Recognition, NLPAbstract
Penelitian ini bertujuan untuk membangun dan mengevaluasi model Named Entity Recognition (NER) berbasis arsitektur Bidirectional Long Short-Term Memory (Bi-LSTM) yang mampu mengenali entitas secara otomatis dalam teks berbahasa Indonesia. Urgensi penelitian ini terletak pada masih minimnya sistem NER yang efektif untuk bahasa Indonesia, terutama pada teks non-formal yang memiliki struktur dan kosakata unik. Permasalahan utama yang diangkat adalah rendahnya akurasi ekstraksi entitas akibat keterbatasan model-model NER sebelumnya dalam memahami konteks bahasa Indonesia yang kompleks dan tidak baku. Data dikumpulkan dari korpus teks Indonesia yang telah dianotasi format BIO (Beginning-Inside-Outside) dan diklasifikasikan dalam jenis entitas seperti Person, Location, Organization, Quantity, dan Time. Proses melibatkan preprocessing (tokenisasi, pelabelan BIO, dan padding), pembangunan arsitektur Bi-LSTM, pelatihan model teknik train-test split (80:20), serta evaluasi menggunakan metrik Precision, Recall, F1-Score, dan confusion matrix. Hasil penelitian menunjukkan model Bi-LSTM berhasil mencapai akurasi keseluruhan sebesar 99% dan F1-Score sebesar 0.99, dengan performa terbaik pada entitas ORGANIZATION dan PERSON. Penelitian ini berkontribusi pada pengembangan NER berbasis budaya lokal serta potensial diterapkan dalam pendidikan, pelestarian budaya, dan pencarian informasi kontekstual berbahasa Indonesia.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Akmal Hisyam Pradhana, Erna Daniati, Muhammad Najibulloh Muzaki

This work is licensed under a Creative Commons Attribution 4.0 International License.