Pemodelan Klasifikasi Popularitas Produk Skincare Menggunakan Support Vector Machine (SVM): Studi Komparatif Kinerja Kernel.
DOI:
https://doi.org/10.59095/ijcsr.v4i2.209Keywords:
Klasifikasi, Kaggle, Machine Learning, Skincare, Support Vector Machine (SVM)Abstract
Pertumbuhan pasar digital telah meningkatkan variasi produk skincare di platform seperti Sephora. Kondisi ini yang pada akhirnya mendorong konsumen menghadapi tantangan dalam penentuan produk yang populer. Oleh karena itu, penelitian ini dilakukan untuk membantu mengidentifikasi popularitas produk skincare melalui pengembangan model klasifikasi berbasis algoritma machine learning. Tujuan penelitian ini adalah membangunodel klasifikasi untuk mengidentifikasi popularitas produk berdasarkan karakteristik produk serta menerapkan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel: linear, RBF, dan polynomial. Data sekunder diperoleh dari Kaggle yang memuat informasi produk skincare di Sephora, dan diolah melalui tahapan CRISP-DM, mulai dari pemahaman bisnis, pembersihan data, labeling popularitas berdasarkan threshold jumlah “loves” dan “reviews”, penyeimbang data dengan Teknik SMOTE, hingga pemodelan menggunakan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel serta evaluasi. Hasil pengujian menunjukkan bahwa kernel linear memberikan akurasi tertinggi sebesar 98,52%. Berdasarkan hasil seleksi fitur, faktor utama yang memengaruhi popularitas produk adalah jumlah ulasan (log_n_of_reviews), jumlah suka (log_n_of_loves), serta rasio interaksi pengguna seperti reviews_to_loves_ratio dan return_on_reviews. Penelitian ini memberikan kontribusi dalam pengembangan model prediksi berbasis machine learning untuk mendukung pengambilan keputusan dalam pemasaran produk skincare
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nila Kamilatutsaniya, Erna Daniati, M. Najibulloh Muzaki

This work is licensed under a Creative Commons Attribution 4.0 International License.